Introduction to HazMat training

Proper and effective HazMat training is essential for any first response team, but achieving it can sometimes be challenging. 

Chemical spills and accidents can happen, on a small or large scale, anywhere that hazardous materials may exist - from industrial sites and complexes to military bases, oil rigs, tanker trucks, shipping vessels, air transport hubs, trailway transport and medical treatment facilities.

Incidents can also occur in a domestic environment (as the result of a carbon monoxide leak or chemical suicide) or in a public environment, such as in the case of an acid attack.

Clandestine laboratories that manufacture drugs, explosives or toxic substances are another potential threat. As are environments where the oxygen level is dangerously low (such as within a confined space which can be hazardous for those without breathing apparatus) or where it is elevated and can lead to reduced ignition points.

The ability to respond effectively to the accidental or deliberate release of any hazardous substance relies on the knowledge and expertise of highly trained HazMat teams. This responsibility can fall to first responders (such as firefighters and paramedics), law enforcement agencies, or military personnel.

An ongoing challenge for anyone charged with instruction is to provide realistic, engaging and safe HazMat training scenarios and experiences that accurately reflect the nature of modern-day threats. 

Related read: How to Create Realistic HazMat First Responder Training Scenarios

HazMat Safety Training eBook

Relevant Blog Posts


What are the most common HazMat threats for first responders?

HazMat first responders are typically the first line of defence after an unintentional or deliberate release of toxic chemicals. As most first responders know, these releases can pose a wide range... Read more

Bristol Police Blog HazMat response

CBRN simulators bring realism to Bristol Police HazMat training

Argon Electronics' range of CBRN response training simulators has received high praise from the Police National CBRN Centre following a recent chemical weapon threat HazMat safety training...Read more.

Defining HazMat

To effectively and safely perform HazMat training, it’s essential for both trainees and instructors to have a strong foundational grasp of the term. 

A HazMat substance is defined as any solid, powder, liquid or gas that (either on its own or through its interaction with other factors) poses a risk to people, organisms, the environment or physical property.

A HazMat incident may occur as a result of leaking, spillage, leaching, dumping or incorrect disposal, and may be accidental, as a consequence of a natural disaster or deliberate in nature.

The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is an internationally agreed system that aims to unify the various HazMat classification and labelling methods used worldwide.


The GHS divides hazardous materials into nine classes, based on their specific chemical characteristics:

  • Class 1: Explosives - including explosive hazards, projection hazards, and fire hazards (eg TNT, dynamite, nitroglycerin, fireworks, ammunition)
  • Class 2: Gases - including flammable, non-flammable and poisonous gases (eg acetylene, hydrogen, propane, nitrogen, neon, carbon dioxide, fluorine, chlorine, hydrogen cyanide)
  • Class 3: Flammable Liquids - divided into one of three Packing Groups based on their initial boiling point and absolute pressure (eg diethyl ether, gasoline, acetone, kerosene, diesel)
  • Class 4: Flammable Solids - including substances that are readily combustible, spontaneously combustible or dangerous when wet (eg nitrocellulose, magnesium, matches, aluminium alkyls, white phosphorous, sodium, calcium, potassium, calcium carbide)
  • Class 5: Oxidizing Agents/Organic Peroxides - eg calcium hypochlorite, ammonium nitrate, hydrogen peroxide, potassium permanganate, benzoyl peroxides, cumene hydroperoxide
  • Class 6: Toxic/Infectious - which are divided into poisons and biohazards (eg potassium cyanide, mercuric chloride, pesticides, methylene chloride, infectious biohazards, virus cultures, pathology specimens)
  • Class 7: Radioactive - comprising substance, or a combination of, which emit ionizing radiation (eg uranium, plutonium, cesium)
  • Class 8: Corrosive - including substances that dissolve organic tissue or severely corrode metal (eg sulfuric acid, hydrochloric acid, potassium hydroxide, sodium hydroxide)
  • Class 9: Miscellaneous Substances - comprising any substance which doesn’t fall into any of the above categories (eg, asbestos, dry ice) 
Related Read: A guide to the four levels of Hazardous Materials (HazMat) response

Relevant Blog Posts


Innovative new technology for realistic chemical HazMat training

With the increase in intensive industry and manufacturing, the fire service and first responders are increasingly being called upon to handle chemical HazMat situations...Read more


Key facts about the nature and effects of nerve agents

The disturbing events in Amesbury, UK in which two members of the general public were exposed to the nerve agent Novichok, have once again brought into sharp focus the silent yet deadly threat...Read more

HazMat vs CBRNe

While HazMat and CBRNe share certain similarities, there are some fundamental differences in terms of the focus and priorities of each approach.

HazMat incident response

    • Doesn’t (usually) deal with weaponized material
    • Involves single and readily identified hazards
    • Focuses on the mitigation of spills or leaks
    • Places priority on public and responder safety
    • Involves a high level of risk management
    • Is responsive in nature, with planning occurring at the scene

CBRNe missions

  • Generally take place under battlefield conditions or as part of special intelligence operations (although they can also take place in public areas)
  • Deal with weaponized chemicals where a hazardous material is combined with a delivery mechanism (eg airburst shell, perfume bottle)
  • Often involve unknown or unidentified substances
  • Focus on the identification of the agent and the perpetrator through sampling and intelligence collection
  • Are mission-focused, often with the acceptance of a greater level of risk
  • Are often planned well in advance or arriving on scene

    Related read: How to Use A HazMat Leak Simulator To Train For Spill Events

Relevant Blog Posts


What is the difference between HazMat and CBRNe?

Although HazMat (hazardous materials) and CBRNe (Chemical, Biological, Radiological, Nuclear and Explosives) emergency response share certain common ground...Read more.


What are the linchpins of effective HazMat response?

Hazardous materials (HazMat) incidents most commonly occur as the result of the transportation or industrial use of large production volume hazardous substances...Read more.

HazMat Regulations

When planning for any HazMat training exercise or situation, it’s also important to have a strong understanding of the regulatory requirements involved in both the training itself, and on a wider scale. 

The most widely applied regulatory scheme applies to the transport of dangerous goods, as set out in the regulations of the United Nations Economic and Social Council (ECOSOC), and which forms the basis for the majority of regional, national and international regulations.

In the US, hazardous materials are defined and regulated by several bodies:

  • The US Environmental Protection Agency (EPA) - responsible for the regulation of hazardous materials that impact on the community and the environment
  • The US Occupational Safety and Health Administration (OSHA) - oversees the regulation of hazardous materials in the workplace as well as hazardous waste operations and emergency response
  • The US Department of Transportation (DOT) - regulates the transport or movement of hazardous materials within commerce in accordance with the US Code of Federal Regulations (CFR)
  • In addition, the International Civil Aviation Organization (ICAO) has developed dangerous goods regulations specific to the unique requirements of air transport; the International Maritime Organization has formulated the International Maritime Goods Code which forms part of the International Convention for the Safety of Life at Sea; and the Intergovernmental Organization for International Carriage by Rail provides regulations that affect the transport of hazardous substances by rail.
  • The US Nuclear Regulatory Commission (NRC) - responsible for regulating materials that emit ionizing radiation (including those that produce alpha particles, beta particles, x-rays, gamma rays and high-speed neutrons)

Related read: Educating HazMat First Responders: Carbon Dioxide Incident- Best Practices


In the UK, the transportation of hazardous goods is controlled by a variety of national and international regulatory bodies that collectively mandate the means by which hazardous goods are packaged, labelled, handled and transported.

Relevant UK regulatory bodies include:

  • The UN’s recommendations on the Transport of Dangerous Goods (contained in the UN model regulations)
  • The International Civil Aviation Organization (ICAO)
  • The International Air Transport Organization (IATA) Dangerous Goods Regulations
  • The International Maritime Dangerous Goods Code (IMDG)
  • The European Agreement governing the International Carriage of Dangerous Goods by Road (ADR)

UK manufacturers or importers of chemicals must comply with the European Regulation, Evaluation, Authorisation and Restriction of Chemicals (REACH).

The Dangerous Goods Emergency Action Code List (EAC) is the required compliance document for all UK emergency services responsible for planning and response to HazMat incidents.

Related read: Educating HazMat First Responders: Carbon Dioxide Incident- Best Practices

Relevant Blog Posts


How to keep first responders safe in chemical warfare agent incidents

Training for chemical warfare agent (CWA) incidents relies on providing first response personnel with realistic, safe and flexible learning opportunities...Read more


How to provide realistic HazMat training for the detection of CWAs

Chemical warfare agents (CWAs) are often imperceptible to the senses, they can be extremely fast acting and they are highly toxic in even the smallest of quantities....Read more

HazMat Training and the Transportation of Hazardous Materials

First responders should be aware of the best practices and safety regulations involved in transporting HazMat materials

Before any hazardous material can be shipped or moved, it must first be certified as being “safe to transport." This process involves verifying all paperwork, packaging, labelling or marking of hazardous materials and following the appropriate procedure for the correct loading, unloading, receiving or forwarding of items.

All substances that are deemed to be a HazMat risk must also be correctly packaged and labelled, according to their potential risk.

HazMat substances can typically be sorted into one of three packing groups:

  1. Packing Group I - indicating that there is a high degree of risk associated with the substance
  2. Packing Group II - indicating that the item presents a moderate degree of danger
  3. Packing Group III - indicating that the material is deemed to be hazardous but of low danger

Once a HazMat substance has been packaged, it must then be clearly labelled for transport, depending on the hazard category into which it falls.

The categories, which are clearly defined in the respective national regulations, cover everything from explosives, flammable gases and spontaneously combustible items to poisons, infectious substances, corrosives and radioactive materials.

In some cases, an item may be classified as having both a primary hazard and one (or more) secondary hazards, which are governed by specific labelling and packaging rules.


Industrial HazMat training

Major industrial HazMat accidents are rare. However, with many thousands of chemicals in commercial use worldwide, there is the ever-present risk of accidental release.

And when a large-scale industrial incident does occur, there is the potential for considerable harm to personnel, the wider public and the environment.

This is why HazMat training for industrial accidents is still extremely important.  The United States federal government, for example, receives an average of twelve reports of hazardous substance incidents every day. Most are discovered and reported by the company or individual responsible, which means that the nature and severity of the hazardous material are known from the outset.

In some cases, however, the HazMat risk may not become apparent until local law enforcement, first responders or military support units arrive on the scene. These units need to have the relevant HazMat training to respond appropriately to these industrial incidents. 

In an incident in Cranston, Rhode Island, for example, twelve firefighters were hospitalised for suspected cyanide poisoning after attending a chemical fire at an industrial facility that stored twenty-five different types of chemical including cyanide and sulfuric acid.

The vital importance of HazMat emergency preparedness was also highlighted in Crosby, Texas, in 2017 when floodwaters caused a power shutdown and a series of explosions at a chemical plant. The hazardous smoke plume that ensued resulted in a 1.5-mile exclusion zone being placed around the plant.

Other industrial-related HazMat incidents in the US have included a mercury spill at the Cincinnati VA Medical Centre due to the movement of an old pipe during construction work; an ammonia leak at a Butterball plant in Jonesboro Arkansas; a polyethylene holding tank catching fire at a chemical plant in Gales Ferry, Connecticut; and a chemical scare at Flint Hills Resources in Illinois.

Toxic plumes have the potential to drift significant distances, as was evidenced in January 2013, when a foul-smelling gas cloud that originated in Rouen, France, prompted thousands of calls to the emergency services all across South Coast of the United Kingdom. 

Related read: Innovative new technology for realistic chemical HazMat training


Relevant Blog Posts


The threat of cyber attacks on industrial HazMat safety

Major industrial hazardous material (HazMat) incidents are thankfully rare. However, with the many thousands of highly toxic chemicals currently in commercial use worldwide...Read more


How to ensure authenticity in HazMat safety training for industry

Although not a common occurrence, when a large-scale industrial incident does occur, there is the potential to cause significant damage and disruption...Read more

HazMat Training and the Military

The armed forces make use of a wide range of hazardous substances as part of national defence missions, including petroleum products, chemicals, explosives and solvents.

All military branches are required to conduct HazMat training and certification of relevant personnel, both uniformed and civilian, in understanding the safe storing, transport and use of HazMat items.

Any military employee whose duties involve HazMat must complete certification training specific to their duties and which can comprise a combination of classroom-based and web-based learning.

The US army, for example, offers certification in Ammo-67-DL HazMat Familiarization and Safety in Transportation which provides an overview of essential HazMat requirements including vehicle inspection, the Joint Hazard Classification System (JHCS), emergency response and certifying HazMat materials for safe transport.

The US navy provides several Hazardous Control and Management (HC&M) Technician certifications for enlisted navy personnel who have responsibility for handling, storing, transporting or disposing of hazardous materials.

Within the UK Ministry of Defence, Army Communications Transport Specialists are required to gain a hazardous materials carriage license.

Similarly within the Royal Air Force (RAF) those responsible for the transport of hazardous materials must adhere to European Accord Dangareux Routier (ADR) regulations concerning the international carriage of dangerous goods by road.


Relevant Blog Posts


An overview of safety certification for army HazMat training

As part of its national defense mission, the US military makes use of a wide range of hazardous substances which can include petroleum products, chemicals, explosives and solvents...Read more


The environmental impact of CBRNe & HazMat training scenarios

The ability to be able to respond to any emergency CBRNe or HazMat situation, whether it be an accidental event or a deliberate act of aggression is a vital necessity...Read more

HazMat Training Methods

There is a strong argument for providing first responders with exposure to realistic and engaging hands-on HazMat training experiences that prepare them for a wide variety of threats.

Structured web-based or classroom teaching should ideally be supported by access to realistic, practical, live-incident training to ensure that HazMat teams are confident in the safe handling of hazardous substances and in the correct protocols to follow in the event of a release.

Traditional HazMat training methods often comprise classroom or field-based exercises – typically with small quantities of live materials or check sources - which trainees then need to locate using conventional detection instruments. While there is value in being given the opportunity to handle real-life detectors, simulant-based HazMat training methods have some inherent limitations.

Using real detectors in training exercises requires taking them out of service for the exercise, potentially requiring their decontamination and maintenance should the equipment be damaged.

The use of live check sources, even in limited quantities, can also present considerable risk to trainees and their instructors, so there is the need to comply with health, safety and environmental regulations.

It’s also important to bear in mind the not inconsiderable cost and administrative effort required to order, transport, and store the substances.

At the other end of the scale, the use of printed signs around the training area, while an inexpensive training method, does little in practice to help trainees understand the correct use of detection equipment and to enable them to determine the best methods of interpreting readings under different operating conditions.


Relevant Blog Posts


The key attributes of effective CBRN and HazMat training

Realistic CBRN and HazMat training scenarios have a crucial role to play in providing first responders and military personnel with life-saving knowledge and preparedness.... Read more


How offsite release exercises can maximise HazMat safety training

Providing first responders and senior management with access to high quality, realistic and regular HazMat safety training opportunities is crucial in ensuring that they are...Read more

Features of effective HazMat Training


Realistic and engaging HazMat training scenarios are essential contributors to effective and long-lasting learning.

While the detector equipment used in live incidents is often fairly simple to use, the key is in creating life-like scenarios that facilitate an instrument’s actual readings and responses to ensure they are understood and the associated decision-making is practised.

Authenticity is crucial, both in terms of the look, feel and response of the detector and the physical and environmental challenges that the HazMat training scenario is setting out to recreate.


The process of ordering, storing, transporting and handling radiological sources and chemicals and gases for detection training scenarios requires administration, time and effort that may be better spent in delivering authentic and high-quality training.

It’s important to be able to train as often, and as diversely, as is required, including the staging of multiple and unlimited scenarios that can be carried out in a variety of locations.

The resetting of equipment, essential decontamination procedures, special permissions, regulatory administration, or the clean-up time between exercises can all cause delays which impact on the success of HazMat training.



When training for HazMat threats, understanding where things have gone wrong can be just as important as knowing when things have gone right.

The use of any HazMat or CBRNe detector requires a trainee to follow a clear set of procedures.

So being able to obtain information on how accurately a trainee has adhered to this process is a key element of the learning experience. If a crucial step has been missed, it’s important to be able to record any errors for review after the exercise.


The aim of any HazMat training exercise should be to create as realistic a scenario as possible, whilst causing no physical or environmental impact.

The use of simulant chemicals or vapours in open-air exercises, for example, can saturate the training environment and pose serious potential health and safety risks.

So any HazMat training outdoors that involves simulants or live sources needs to be carefully controlled - from the time of day it is conducted, to the appropriate weather conditions and the quantity of agent being released.


The value for money of HazMat training scenarios should take into account the lifetime cost of ownership of the selected training method.

Ongoing maintenance and servicing of devices comes at a cost, as does acquiring, transporting, and handling sources, chemicals or gases and ultimately site remediation.

It’s also important to consider the the cost of specialist safety personnel and the effect that the use of any simulant agent may have on expensive detector equipment over time.

Minimizing the wear and tear on detection equipment also ensures that operational readiness is maintained.

PPE and HazMat Training 

Personal Protective Equipment (PPE) apparatus provides essential protection in the event of chemical emergency incidents. However its use also presents some inherent challenges for trainees:

  • Restriction of movement due to the weight of the equipment
  • Restriction of vision due to visual field limitations
  • Problems with communication (which can be partially overcome by the use of 2-way radios)
  • Ergonomic challenges that can affect the operating, reading and interpreting certain detection instruments
  • The risk of overheating or dehydration
  • Psychological stressors due to the confining nature of the full suits

Crucially too, the equipment that offers the most highly protective form of protection, such as that used in Chemical Emergency Response, can only be worn for a few minutes at a time.

Because of the physiological and psychological stressors associated with the use of PPE, it’s also essential to conduct a medical monitoring program of the participants to record weight, vital signs, recent medical history, hydration and appropriate decontamination at the conclusion of the incident.

Training programs are also essential for HazMat teams to ensure they understand how to don and doff Personal Protective Ensemble (PPE), use their equipment, how to maintain and decontaminate it, how to recognize when the PPE or equipment has been compromised (due to tears in the suit for example) and when it is necessary to dispose of the apparatus.

Most importantly wearing the appropriate PPE should form an important element of any exercise so that trainees experience the full physiological burden and any ergonomic limitations of their detection equipment. To borrow a military phrase - “train as you fight.”

Relevant Blog Posts


Why realistic scenarios are vital for effective HazMat safety training

From transport companies to military bases, industrial units and medical facilities, the handling of hazardous materials requires strict regulatory compliance...Read more


How to create realistic and safe HazMat training scenarios

For those tasked with HazMat safety instruction, the desire to implement realistic, efficient and cost-effective scenarios always needs to carefully balanced...Read more

A comparision of HazMat training methods

In this chapter, we explore the features, advantages and limitations of three HazMat training methods:

  • Live Agent Training (LAT)
  • Simulant Agent Training (SAT)
  • Simulator Training

Live-Agent Training (LAT)

Live Agent Training (LAT) is widely considered to be the pinnacle of hazmat training for the military first responders because it utilizes small quantities of live radiological and chemical sources to create realistic, hands-on training scenarios.

But while LAT can provide an invaluable opportunity to experience life-like hazmat emergencies in the field, it can also be time-intensive and costly to implement and requires strict adherence to environmental / health and safety regulations.

The highly specialised nature of such training also means that LAT can often only be undertaken once a trainee has demonstrated an advanced understanding and proficiency in the detection, identification, monitoring (DIM) and decontamination of hazardous materials.

Safety when dealing with any live chemical or biological agent is paramount so LAT can only be undertaken in specially designated LAT centers.

Simulant Agent Training (SAT)

Simulant agent training is in many respects not too far removed from LAT, as it involves the use of chemical substances that mimic the properties and behaviour of live sources.

But while simulant agent training offers a high degree of realism it does also have its shortcomings.

One of the biggest challenges faced by HazMat instructors is the necessity for environmental safety. Simulants can be difficult to dispense and control in open air scenarios for example, and large-area dissemination is generally not encouraged.

Even when dispersal is permitted, environmental factors such as wind, air temperature and saturation within the training location can significantly impede the learning experience.

Many chemical simulants are not easily biodegradable, so the repeated use of simulants in any one specific area can lead to a build-up of toxicity over time, with the potential to become a significant hazard both to the environment and to human health.

The very small quantities that are often used can also limit scenario options, which can adversely impact upon the overall learning experience.

Related read: HazMat Training Equipment: 10 Effective Tools To Consider


Simulation Training

Simulation-based HazMat training incorporates the use of intelligent, computer-based simulation tools that accurately replicate how real devices react when exposed to a range of chemical substances.

Simulator training also incorporates the use of realistic replica detectors which means it serves as an invaluable training ground in preparing students for the unique challenges of LAT. The key difference though is that no chemical or live agent is required.

Unlike LAT, which has stringent regulatory controls, simulator training can be undertaken anywhere, including public buildings and civilian locations.

Larger training areas can also be quickly set up without any requirement for adherence to environmental regulations.

Because simulator detectors have been designed to respond to safe electronic sources, they are especially useful in the carrying out of Hazmat, and in particular radiation safety training exercises.

Simulator radiation detectors for example, provide radiological incident instructors with the tools to safely teach search, reconnaissance, survey and location skills, as well as providing a hands- on understanding of isodoserate mapping, safe demarcation, shielding and the principles of ALARA.

Crucially though, because no live substances are used, there are no environmental or health and safety implications.

Related Read: 7 Most Effective Radiation Hazards Simulators

Relevant Blog Posts


New technology on track to vitalize confined space HazMat training

Teams operating in confined spaces within hazardous industrial buildings or process facilities understand all too well the importance of adhering to strict health and safety regulations...Read more


How simulators enhance substance detection in HazMat training

Historically, chemical warfare agent (CWA) training involved the use of simulants which were dispersed manually. But new generations of intelligent, computer-based simulation tools offer...Read more

HazMat Training with Simulators

The use of simulator detector instruments enables industrial, military personnel, and first responders to experience realistic and compelling HazMat training scenarios of the highest possible standard.

An alternative to the more traditional methods of HazMat training is to use an intelligent computer-based simulation tool.

Top 5 HazMat Training Devices


The software-based PlumeSIM-SMART system has been specially designed for use in a wide range of industrial, civil emergency and potentially military scenarios, including the release of radiological, chemical and petrochemical gases, vapors and agents.

PlumeSIM-SMART runs on a standard laptop that connects wirelessly to one or more handheld smart devices or mobiles (SMART-SIM) and that simulates real-life detection instruments by means of an installed software application. Students can then conduct their activity in a designated training location which can be up to 2,500km in area.

PlumeSIM-SMART enables instructors to create, run and optimise each HazMat training exercise from a central point. It also provides them with the ability to influence the readings that their students obtain across the training area and throughout each phase of the exercise.

Each student is able to see a customised simulated instrument display on their personal SMART-SIM, which automatically updates, in real-time, to reflect their individual movement and location and the effect of changing wind and weather conditions.

The route and actions taken byeach student are also automatically logged, which allows the instructor to review the choice of survey route, the time taken, the information collected and the decisions made.

Tabletop exercises, which are ideal for command officer and management HazMat training, are also readily implemented and can provide a cost-effective practice run for field exercises.

Computer-based simulation tools such as PlumeSIM-SMART offer an extremely effective extension to existing safety management programmes by providing a realistic dimension to training scenarios that ensure trainees are confident, and competent, in responding to a wide range of potential HazMat threats.

Download product sheet

Watch this video to see PlumSIM in action:



Argon’s MultiGAS-SIM represents a new, innovative approacmultisimh to using a Multigas meter for training. The app operates on an Andriod smart mobile device which is attached to the MultiGAS-SIM interface module. It supports from one to a total of eight different simulation sensor types, including O2 and LEL. 

You can configure the MultiGAS-SIM to use specific simulation sensors as needed, depending on if you would like to represent detectors in use with single or multiple sensor types.

Download product sheet

RDS100-SIM / PDR-77 / CDV 718 Radiation Safety Training Simulation Probes

This training kit comes as a set of Alpha, Beta and Beta Gamma training probes, though they are also available independently. The kit provides users with a training system which has the operational features of real Mirion (formerly Canberra) probes. 

RDS100-SIM / PDR-77 / CDV 718 Radiation Safety Training Simulation Probes respond to safe electromagnetic and magnetic simulated sources of alpha, beta, and gamma radiation. It can be used anywhere and at any time, without needing to addRDS 100ress the regulatory, environmental, and health and safety concerns that come with real sources.

The Beta Gamma probe is also compatible with the Argon PlumeSIM system, enabling wide area tactical field and nuclear emergency response exercises. 

Download product sheet

RadEye GF10-SIM

This series of training simulators have an extremely similar look, feel, and response to that of the actual ThermoFisher detectors.RadEye_GF-10_mR-prod-page

The RadEye series features the same user interface as the real detectors, including display, indicators, switch panel, sounder, and vibrator. 

The system works with Radsim electromagnetic sources that safely simulate ionising radiation. This eliminates the need for regulatory, environmental, and health and safety planning, which allows for Real Experience Training anywhere, and at any time. 



The AccuRad-SIM is developed in partnership with Mirion and features response speed and characteristics which, when approaching and withdrawing from the simulation source, are just like the real AccuRad. This enables highly realistic source search-and-find training.

The AccuRad-SIM detects the Radsim GS4 simulation Gamma source at a free space distance of 60 metres (200 feet) distance line of sight. It also simulates both the trend and radar modes, which gives the user accurate directionality information, just like the real detector. 


Thanks to powerful proprietary signal processing, these readings are repeatable each time students revisit the same location. Even the effect of body shielding to determine source position is realistically simulated, allowing students to learn how to use and interpret their detector readings and alarms effectively.


Relevant Blog Posts


7 essential features to look for in HazMat safety training simulators

An essential requirement of every CBRNe and HazMat responder is to be able to provide rapid, safe and effective response in the event of a civil or military emergency...Read more.


How prepared do firefighters feel to handle HazMat incidents?

From transport accidents involving hazardous compounds, to the mishandling of household chemicals, or the deliberate release of hazardous materials...Read more.

HazMat Training in Practice: A Case Study

Creating realistic first responder training scenarios requires practical, hands-on use of highly specialised equipment.

Ken Cochran, Radiological Specialist for the Tennessee Emergency Management Agency (TEMA), knows this well. He’s responsible for the radiological training of a broad range of response personnel.

TEMA offers a programme called the Modular Emergency Radiological Response Team (MERRTT), which provides responders with a practical, hands-on introduction to the fundamentals of radioactive materials, the use of radiological survey instrumentation, and the techniques required for decontamination.

Cochran recognised the opportunity to enhance the agency’s hands-on training capability using simulator-based technology and began looking for simulators that were compatible with the Mirion / Canberra CDV-718A survey meter.

This led him to Argon Electronics’ simulator training product range. He purchased the DT616-SIM Beta Gamma simulator probe and simulation sources.

He first used the equipment in a MERRTT training program for a group of firefighters.

“The weather outside was terrible,” Cochran says, “so we utilized a big garage used for parking fire trucks to simulate locating a radiation source of unknown activity.”

Cochran experienced first hand the flexibility of the equipment and the ability to set up training when, where, and how he wanted. He was also impressed with how this equipment can enhance the ability for the trainees to actually “see” the manner in which radiation behaves and to experience the ease with which it can be successfully detected.

“All the firefighters were extremely impressed that we were able to do what we did without using live radiological sources,” Cochran says. “They all love it. I have actually loaned the equipment out within the agency for similar training as well as to a local firehouse for their in-house refresher training.”

Relevant Blog Posts


The role of personal protective equipment in realistic HazMat training

In recent blog posts we’ve discussed the significance of providing realistic training opportunities for military crews and first responders....Read more.


How CBRN training with simulators reduces reliance on PPE

With the increasing prevalence of the use of chemical warfare agents (CWAs) in conflicts, the need for hands-on training in the use of detector equipment is even more crucial...Read more.